Ваш регион

Москва

&nbps;
 
Страницы: 1 2 3
 

Гормональная регуляция обмена веществ

При относительной или абсолютной инсулиновой недостаточности нарушаются процессы поступления глюкозы в инсулинзависимые ткани, снижается окислительное фосфорилирование и образование Г-6-Ф, в последующем нарушаются гликолитическое окисление глюкозы, цикл Кребса и гексозомонофосфатный (пентозный) цикл, угнетается синтез гликогена и усиливается гликогенолиз.

Катехоламины стимулируют гликогенолиз в печени и мышцах. Увеличение синтеза цАМФ под влиянием катехоламинов и в большей степени адреналина активирует фосфорилазу печени, распад гликогена и образование большого количества свободной глюкозы. При этом увеличиваются поглощение кислорода, затраты энергии в связи с усилением сердечной деятельности, повышением мышечного тонуса и окислением молочной кислоты в печени.

Глюкагон, подобно адреналину, активирует аденилатциклазу, образование цАМФ, фосфорилазу, гликогенолиз и выход глюкозы из печени в кровяное русло. Это влияние намного сильнее, чем у адреналина. Однако глюкагон не действует на мышечную фосфорилазу, а следовательно, не мобилизует гликоген мышц. Гипергликемический эффект глюкагона является результатом стимуляции печеночного гликогенолиза и глюконеогенеза,

индукции секреции адреналина, торможения проникновения глюкозы в мышцы.

Гормон роста увеличивает выход глюкозы в печеночные вены, усиливает глюконеогенез, уменьшает поглощение глюкозы на периферии, а также усиливает липолиз, в результате чего в крови повышается концентрация свободных жирных кислот, которые подавляют действие инсулина на мембранный транспорт глюкозы.

Глюкокортикоиды стимулируют катаболизм белков и глюконеогенез, повышают содержание гликогена в печени и в меньшей степени в мышцах, уменьшают мембранный транспорт глюкозы и ее утилизацию на периферии. Гипергликемическое действие АКТГ опосредуется в основном через глюкокортикоиды.

Жировой обмен. Жиры являются одним из основных источников энергии: 40-50% энергопродукции организма обеспечивается триглицеридами (триацилглицерины), на долю которых приходится более 95% всех липидов. В организме нормального человека с массой 70 кг на долю жировой ткани приходится 12 кг (110 000 ккал). Наряду с этим в крови определяется дополнительно 3 г триглицеридов (30 ккал), 0,3 г свободных жирных кислот (3 ккал) и 0,2 г кетоновых тел (0,8ккал). Период полураспада жирных кислот составляет несколько минут. Жиры, поступившие в кишечник с пишей, под влиянием гидролитических ферментов и желчи эмульгируются до мельчайших капель, специфические липазы, действующие на их поверхности, гидролизуют триглицериды, эфиры холестерина и фосфоглицериды до жирных кислот, диацилглицеринов, 2-моноацилглицеринов, глицерина, холестерина, лизофосфатидилхолина. Таким образом, в желудочно-кишечном тракте абсорбируется 40% холестерина и более 85% триглицеридов, поступающих с пищей. Перечисленные вещества, связываясь с желчными кислотами, образуют смешанные мицеллы, размеры которых на несколько порядков меньше, чем размеры частиц эмульсии. Такие мицеллы всасываются клетками эпителия тонкой кишки, в которых составные части мицеллы вступают друг с другом в реакции синтеза, в результате чего образуются простые и сложные липиды. Липиды и липопротеиды, синтезированные в эпителиальных клетках кишечника, образуют липидные капли, называемые хиломикронами. Они проникают в лимфатические сосуды и придают лимфе характерный вид молока. Лимфа, содержащая большое количество хиломикронов, через грудной проток попадает в венозную кровь. Водорастворимые жирные кислоты с короткой углеродной цепью и некоторая часть глицерина всасываются капиллярами портальной системы.

В плазме липиды представлены в виде триглицеридов, эстерифицированного и свободного холестерина, фосфолипидов. Липиды плазмы с помощью различных методов (электрофорез) разделяют на 5 классов: 1) хиломикроны; 2) липопротеиды очень низкой плотности (ЛОНП); 3) липопротеиды средней плотности (ЛСП); 4) липопротеиды низкой плотности (ЛНП); 5) липопротеиды высокой плотности (ЛВП, подразделяющиеся на два подкласса – ЛВП2 и ЛВП3). Химический состав липопротеидов плазмы представлен в табл. 1.

Таблица 1

Химический состав липопротеидов плазмы (% сухой массы)

Липопротеиды

Белок

Триглицериды

Эфиры

холестерина

Свободный

холестерин

Фосфолипиды

Хиломикроны

2

85

4

2

8

ЛОНП

10

60

13

8

18

ЛСП

18

30

22

8

22

ЛНП

25

7

40

10

20

ЛВП:

 

ЛВП2

40

5

15

5

35

ЛВП3

55

3

12

4

25

Белки, входящие в состав липопротеидов, называются аполипопротеидами (табл. 2).


Таблица 2

Аполипротеиды плазмы человека

Аполипротеид

Молекулярная

масса, Д

Функция

Место

синтеза

A-I

28300

Связывает липиды, кофактор ЛХАТ*;

входит в состав ЛВП (основной белок)

Печень,

кишечник

A-II

17400

Входит в состав ЛВП (второй белок),

Активирует ЛХАТ (кофактор)

Печень

A-IV

43000-

48000

Кофактор ЛХАТ

Печень,

кишечник

B-100

513000

Транспорт триглицеридов в печени,

маркер ЛОНП

Печень

В-48

246000

Транспорт триглицеридов в кишечнике,

маркер хиломикронов

Кишечник

С-I

6605

Активирование ЛХАТ

Печень,

Кишечник

С-II

8824

Активирование ЛПЛ (липо-

Печень,

 

протеиновая липаза)

кишечник

С-III

8750

Ингибитор ЛПЛ (?), гликопротеин

Печень,

кишечник

Д

19000

Транспорт эфиров холестерина

Печень

Е

34200

Распознавание липопротеидов

связывание хилокронов в печени

Печень

Липиды плазмы транспортируются в виде специальных агрегатов – липопротеидов.

В таких агрегатах различают сердцевину и оболочку. Сердцевина в свою очередь состоит из триглицеридов, эфиров холестерина В и эфиров жирных кислот, оболочка – из фосфолипидов, свободного холестерина и аполипопротеидов, обеспечивающих распознавание соответствующих рецепторов на поверхности клеток и активацию указанных выше ферментов.

Образование хиломикронов в кишечнике происходит при обязательном участии аполипопротеида В-48 (апо-В-48), который синтезируется в эпителиальных клетках кишечника. В состав хиломикронов, помимо апо-В-48, входит небольшое количество аполипопротеинов группы А. После попадания лимфы в грудной проток хиломикроны взаимодействуют с ЛВП, носителями аполипопротеидов группы С и Е; при участии липопротеидной липазы (ЛПЛ) триглицериды, содержащиеся в хиломикронах, гидролизуются на глицерин и свободные жирные кислоты (СЖК). ЛПЛ присутствуют на эндотелиальных поверхностях клеток мышцы сердца, жировой ткани и мышц скелета. СЖК способны проникать в клетки, где используются как источник энергии или участвуют в процессах липогенеза.

ЛОНП синтезируются в печени. Их сердцевина состоит из триглицеридов и эфиров холестерина. Белки, входящие в состав оболочки, представлены апо-В-100, апо-Е и апо-С. ЛОНП служат источником образования ЛСП и ЛНП.

ЛНП являются переносчиками эфиров холестерина, необходимого для синтеза стероидных гормонов, образования желчных кислот. Этот класс липопротеидов ответствен за транспорт 70% холестерина плазмы. В состав оболочки ЛНП входит апо-В-100, способный распознать соответствующий рецептор к ЛНП, синтез которого контролируется геном, расположенным на 19-й хромосоме. После взаимодействия ЛНП с рецептором образующийся комплекс проникает внутрь клетки, где в области лизосом под влиянием лизосомальных ферментов происходит гидролиз сердцевины и высвобождение свободного холестерина.

ЛВП образуются в печени и содержат фосфолипиды, свободный холестерин, апо-Е, апо-С и небольшое количество апо-А-1. ЛВП связывают свободный холестерин на периферии и транспортируют его к печени. ЛВП содержат ЛХАТ (лецитин/холестерин ацилтрансфераза), которая активирует перенос ацетиловой группы фосфолипидов на свободный холестерин, осуществляя эстерификацию холестерина. Эфиры холестерина депонируются во многих тканях организма (кора надпочечников и др.) и по мере необходимости используются для биосинтеза соответствующих веществ.

Выше указывалось, что в результате обмена углеводов образуются ацетил-КоА, АТФ, NADPH (2), глицерол-3-фосфат, используемые для синтеза жира, и количество липидов, накапливающихся в жировых депо, в большей степени зависит от содержания в пищевом рационе углеводов, а не жиров.

Липогенез – процесс синтеза жирных кислот, интенсивно протекающий в печени и жировой ткани. Следует отметить, что биосинтез липидов осуществляется в основном в цитоплазме клетки и лишь незначительная их часть, как считают некоторые авторы, образуется в митохондриях.

Образовавшийся в митохондриях ацетил-КоА способен проникать через их мембрану в цитоплазму только после взаимодействия с оксалоацетатом и образования цитрата, который достигает цитоплазмы, где вновь превращается в ацетил-КоА и оксалоацетат. Таким образом, оксалоацетат выполняет функцию катализатора, способствуя переносу ацетильной группы из интрамитохондриального пространства в цитозоль, где при участии ацетил-КоА-карбоксилазы происходит карбоксилирование ацетил-КоА с образованием малонил-КоА. Последний, взаимодействуя с комплексом жирные кислоты – белок при участии АТФ и КоА, превращается в комплекс жирнокислотный ацетил-КоА, что является необходимой стадией образования триглицеридов.

Карбоксилирование ацетил-КоА является важным регулятором синтеза жирных кислот и на всех последующих этапах липогенеза участвуют либо малонил-КоА, либо ацетил-КоА. Так под влиянием синтетазы жирных кислот и при использовании одной молекулы ацетил-КоА и 7 молекул малонил-КоА образуется пальмитил-КоА, способный к разнообразным превращениям. При потере одной молекулы СО2 и КоА образуется пальмитиновая кислота, молекула которой содержит 16 атомов углерода. Путем удлинения цепи в митохондриях или в плазматическом ретикулуме до 18 атомов углерода пальмитиновая кислота может быть превращена в стеариновую, а после десатурации она же преобразуется в пальмитоолеиновую и олеиновую кислоты.

При эстерификации жирных кислот с глицерином образуются триглицериды, причем в реакции участвует не свободный глицерин, а его производное – глицерол-3-фосфат, образующийся в печени из глицерина при участии глицеролкиназы. Эстерификация жирных кислот в жировой ткани может происходить лишь при достаточном поступлении дигидроксиацетонфосфата, который образуется в процессе гликолиза и конвертируется в глицерол-3-фосфат при участии глицерофосфатдегидрогеназы.

В печени и жировой ткани инсулин увеличивает синтез жирных кислот и триглицеридов. При эндогенном биосинтезе триглицеридов, кроме глюкозы, могут использоваться соединения, образующиеся из гликогенных аминокислот. Липогенез в печени контролируется тиротропным гормоном и гормонами щитовидной железы. Так, после гипофизэктомии синтез липидов печенью уменьшается и восстанавливается после введения тироксина.

Липолиз – процесс гидролиза липидов с образованием неэстерифицированных жирных кислот и глицерина – катализируется внутриклеточной гормональнозависимой липазой (триацилглицериновая липаза), которая воздействует на триглицериды и стимулируется цАМФ. Липаза лимитирует скорость липолиза, а образование цАМФ под влиянием аденилатциклазы находится в свою очередь под контролем различных гормонов.

Мембрана адипоцитов содержит рецепторы, взаимодействующие с гормонами, обладающими липолитическими свойствами (катехоламины, АКТГ, СТГ), и рецепторы к инсулину. В результате действия липолитических гормонов повышается активность аденилатциклазы, увеличивается образование цАМФ, активизируются ЛПЛ и липолиз жира. Взаимодействие инсулина с соответствующими рецепторами, наоборот, приводит к угнетению аденилатциклазы, снижению концентрации цАМФ и торможению липолиза. Липолиз увеличивается во время голодания, при продолжительной работе, охлаждении, стрессе. Липолитическое действие катехоламинов (адреналина, норадреналина) и глюкагона осуществляется путем активации аденилатциклазы. С физиологической точки зрения, роль норадреналина в процессе липолиза представляется более важной, чем адреналина. Он образуется в адренергических нервных окончаниях в жировой ткани и обеспечивает мобилизацию жирных кислот.

 
 
Страницы: 1 2 3
 
 
 

Ваш комментарий

 
 
Задать вопрос
Самое популярное

Когда и как потерять девственность

Девственность и куриное яйцо. Какая между ними связь? А такая, что жители племени куаньяма, что живет на границе с Намибией, в древности лишали девочек девственности при помощи куриного яйца. Ненамно

Всё о температуре тела

Температура тела - комплексный показатель теплового состояния организма человека, отражающий сложные отношения между теплопродукцией (выработкой тепла) различных органов и тканей и теплообменом между

10 способов сбросить 5 кг

Небольшие изменения в питании и образе жизни помогут изменить ваш вес. Хотите сбросить лишние килограммы? Не переживайте, вам не придется морить себя голодом или делать изнурительные упражнения. Иссл

О насНаши клиентыРеклама медицинских центровМаркетинг для салонов красоты и SPA
Рейтинг Nedug.Ru - клиники Москвы, клиники Петербурга
© 2000-2021 Nedug.Ru. Информация на этом сайте не призвана заменить профессиональное медицинское обслуживание, консультации и диагностику. Если вы обнаружили у себя симптомы болезни или плохо себя чувствуете, то необходимо обратиться к врачу для получения дополнительных рекомендаций и лечения. Все замечания, пожелания и предложения присылайте на [email protected]